About me

I am Dimitar I. Dimitrov, a direct doctorate student at the Department of Computer Science, ETH Zürich. I am part of the Secure, Reliable, and Intelligent Systems Lab, supervised by Prof. Martin Vechev.

Education

  • ETH Zurich, September 2018 - current
    Direct doctorate student in Computer Science
  • The University of Edinburgh, UK, 2012 – 2016
    BEng Computer Science
  • University of California, Irvine, USA, 2014 - 2015
    Exchange student
  • Sofia High School of Mathematics, Sofia, Bulgaria, 2004 – 2012
    Bulgaria diploma
view CV as PDF

Work Experience

Full-time Software Developer, Arista Networks, Dublin, Republic of Ireland 2016/09 – 2018/06
Summer Intern, Arista Networks, San Jose, CA, USA 2015/06 – 2015/09
Teaching Assistant and Web Developer, Avid Academy for Gifted Youth, Irvine, CA, USA 2014/12 – 2015/06
Lead Android Developer, The City of Edinburgh Council, Edinburgh, UK 2013/06 – 2014/09

Publications

2024

DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov, Dimitar I. Dimitrov, Maximilian Baader, Mark Niklas Müller, Martin Vechev
NeurIPS 2024
Constraint-Based Synthetic Data Generation for LLM Mathematical Reasoning
Timofey Fedoseev, Dimitar I. Dimitrov, Timon Gehr, Martin Vechev
Workshop on Mathematical Reasoning, NeurIPS 2024
SPEAR: Exact Gradient Inversion of Batches in Federated Learning
Dimitar I. Dimitrov, Maximilian Baader, Mark Niklas Müller, Martin Vechev
NeurIPS 2024
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
Kostadin Garov, Dimitar I. Dimitrov, Nikola Jovanović, Martin Vechev
ICLR 2024

2023

Group and Attack: Auditing Differential Privacy
Johan Lokna, Anouk Paradis, Dimitar I. Dimitrov, Martin Vechev
ACM CCS 2023
TabLeak: Tabular Data Leakage in Federated Learning
Mark Vero, Mislav Balunović, Dimitar I. Dimitrov, Martin Vechev
ICML 2023
FARE: Provably Fair Representation Learning with Practical Certificates
Nikola Jovanović, Mislav Balunović, Dimitar I. Dimitrov, Martin Vechev
ICML 2023

2022

LAMP: Extracting Text from Gradients with Language Model Priors
Mislav Balunović*, Dimitar I. Dimitrov*, Nikola Jovanović, Martin Vechev
NeurIPS 2022 * Equal contribution
Data Leakage in Federated Averaging
Dimitar I. Dimitrov, Mislav Balunović, Nikola Konstantinov, Martin Vechev
TMLR 2022
Shared Certificates for Neural Network Verification
Marc Fischer*, Christian Sprecher*, Dimitar I. Dimitrov, Gagandeep Singh, Martin Vechev
CAV 2022 * Equal contribution
Provably Robust Adversarial Examples
Dimitar I. Dimitrov, Gagandeep Singh, Timon Gehr, Martin Vechev
ICLR 2022
Bayesian Framework for Gradient Leakage
Mislav Balunović, Dimitar I. Dimitrov, Robin Staab, Martin Vechev
ICLR 2022

2021

Fast and Precise Certification of Transformers
Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, Martin Vechev
PLDI 2021